Asymptotic enumeration of Eulerian circuits for graphs with strong mixing properties
نویسنده
چکیده
Let G be a simple connected graph all of whose vertices have even degrees. An Eulerian circuit in G is a closed walk (see, for example, [2]) which uses every edge of G exactly once. Two Eulerian circuits are called equivalent if one is a cyclic permutation of the other. It is clear that the size of such an equivalence class equals the number of edges of graph G. Let EC(G) denote the number of equivalence classes of Eulerian circuits in G. The problem of counting the number of Eulerian circuits in an undirected simple graph (i.e. graph without loops and multiple edges) is complete for the class #P , see [3]. Thus this problem is difficult in terms of the complexity theory. Moreover, it should be noted that in contrast to many other hard problems of counting on graphs (see, for example, [1], [9]), even approximate and probabilistic polynomial algorithms for counting the number of Eulerian circuits are not known in the literature. As concerns the class of complete graphs Kn, the exact expression of the number of Eulerian circuits for odd n is unknown (it is clear that EC(Kn) = 0 for even n) and only the asymptotic formula was obtained (see [10]): as
منابع مشابه
On the class of graphs with strong mixing properties
We study three mixing properties of a graph: large algebraic connectivity, large Cheeger constant (isoperimetric number) and large spectral gap from 1 for the second largest eigenvalue of the transition probability matrix of the random walk on the graph. We prove equivalence of this properties (in some sense). We give estimates for the probability for a random graph to satisfy these properties....
متن کاملAsymptotic Enumeration of Eulerian Circuits in the Complete Graph
We determine the asymptotic behaviour of the number of eulerian circuits in a complete graph of odd order. One corollary of our result is the following. If a maximum random walk, constrained to use each edge at most once, is taken on Kn, then the probability that all the edges are eventually used is asymptotic to en. Some similar results are obtained about eulerian circuits and spanning trees i...
متن کاملAsymptotic Enumeration Theorems for the Numbers of Spanning Trees and Eulerian Trials in Circulant Digraphs & Graphs
In this paper, we consider the asymptotic properties of the numbers of spanning trees and Eulerian trials in circulant digraphs and graphs. Let C(p, s1, s2, . . . , sk) be a directed or undirected circulant graph. Let T (C(p, s1, s2, . . . , sk)) and E(C(p, s1, s2, . . . , sk)) be the numbers ∗This work was partially supported by the Natural Science Foundation of China, email: fjzhang@jingxian....
متن کاملInformation in Strings: Enumeration of Eulerian Paths and Eulerian Components in Markov Sequences
In this paper, we evaluate the number of Eulerian circuits that can be obtained by an arbitrary rotation in a Markovian string, i.e., corresponding to a given Markovian type. Since all rotations do not result in an Eulerian circuit, but several of them, called Eulerian components; we also investigate the number of Eulerian components that result from a random rotation in a Markovian string. We ...
متن کاملLine graphs associated to the maximal graph
Let $R$ be a commutative ring with identity. Let $G(R)$ denote the maximal graph associated to $R$, i.e., $G(R)$ is a graph with vertices as the elements of $R$, where two distinct vertices $a$ and $b$ are adjacent if and only if there is a maximal ideal of $R$ containing both. Let $Gamma(R)$ denote the restriction of $G(R)$ to non-unit elements of $R$. In this paper we study the various graphi...
متن کامل